skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tejos, Nicolas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We report the small-scale spatial variation in cool (T ∼ 104K) Mgiiabsorption detected in the circumgalactic medium (CGM) of a star-forming galaxy atz ≈ 0.8. The CGM of this galaxy is probed by a spatially extended bright background gravitationally lensed arc atz= 2.76. The background arc continuously samples the CGM of the foreground galaxy at a range of impact parameters between 54 and 66 kpc. The Mgiiabsorption strengths vary by more than a factor of 2 within these ranges. A power-law fit to the fractional variation of absorption strengths yields a coherence length of 5.8 kpc within this range of impact parameters. This suggests a high degree of spatial coherence in the CGM of this galaxy. The host galaxy is driving a strong galactic outflow with a mean outflow velocity ≈ −179 km s−1and mass outflow rate M ̇ out 6 4 27 + 31 Myr−1traced by blueshifted Mgiiand Feiiabsorption lines. The galaxy itself has a spatially extended emission halo with a maximum spatial extent of ≈33 kpc traced by [Oii], [Oiii], and Hβemission lines. The extended emission halo shows kinematic signatures of corotating halo gas with solar metallicity. Taken together, these observations suggest evidence of a baryon cycle that is recycling the outflowing gas to form the next generation of stars. 
    more » « less
    Free, publicly-accessible full text available June 17, 2026
  2. Context.Fast radio bursts (FRBs) are very energetic pulses in the radio wavelengths that have an unknown physical origin. They can be used to study the intergalactic medium thanks to their dispersion measure (DM). The DM has several contributions that can be measured (or estimated), including the contribution from the host galaxy itself, DMhost. The DMhostis generally difficult to measure, thus limiting the use of FRBs as cosmological probes and our understanding of their physical origin(s). Aims.In this work we empirically estimated DMhostfor a sample of 12 galaxy hosts of well-localized FRBs at 0.11 < z < 0.53 using a direct method based solely on the properties of the host galaxies themselves, referred to as DMhostdirect. We also explored possible correlations between DMhostand some key global properties of galaxies. Methods.We used VLT/MUSE observations of the FRB hosts to estimate our empirical DMhostdirect. The method relies on estimating the DM contribution of both the FRB host galaxy’s interstellar medium (DMhostISM) and its halo (DMhosthalo) separately. For comparison purposes, we also provide an alternative indirect method for estimating DMhostbased on the Macquart relation (DMhostMacquart). Results.We find an average ⟨DMhost⟩ = 80 ± 11 pc cm−3with a standard deviation of 38 pc cm−3(in the rest frame) using our direct method, with a systematic uncertainty of ∼30%. This is larger than the typically used value of 50 pc cm−3but consistent within the uncertainties. We report positive correlations between DMhostand both the stellar masses and the star formation rates of their hosts galaxies. In contrast, we do not find any strong correlation between DMhostand the redshift nor the projected distances to the center of the FRB hosts. Finally, we do not find any strong correlation between DMhostdirectand DMhostMacquart, although the average values of the two are consistent within the uncertainties. Conclusions.Our reported correlations between DMhostdirectand stellar masses and/or the star formation rates of the galaxies could be used in future studies to improve the priors used in establishing DMhostfor individual FRBs. Similarly, such correlations and the lack of a strong redshift evolution can be used to constrain models for the progenitor of FRBs, for example by comparing them with theoretical models. However, the lack of correlation between DMhostdirectand DMhostdirectindicates that there may be contributions to the DM of FRBs not included in our DMhostdirectmodeling, for example large DMs from the immediate environment of the FRB progenitor and/or intervening large-scale structures not accounted for in DMhostMacquart
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  3. Abstract This paper presents the first public data release (DR1) of the FRB Line-of-sight Ionization Measurement From Lightcone AAOmega Mapping (FLIMFLAM) survey, a wide field spectroscopic survey targeted on the fields of 10 precisely localized fast radio bursts (FRBs). DR1 encompasses spectroscopic data for 10,468 galaxy redshifts across 10 FRB fields withz < 0.4, covering approximately 26 deg2of the sky in total. FLIMFLAM is composed of several layers, encompassing the “wide” (covering ∼degree or >10 Mpc scales), “narrow” (several arcminutes or ∼Mpc), and integral field unit (“IFU”; ∼arcminute or ∼100 kpc) components. The bulk of the data comprises spectroscopy from the Two Degree Field-AAOmega instrument on the 3.9 m Anglo-Australian Telescope, while most of the narrow and IFU data was achieved using an ensemble of 8–10 m class telescopes. We summarize the information on our selected FRB fields, the criteria for target selection, methodologies employed for data reduction, spectral analysis processes, and an overview of our data products. An evaluation of our data reveals an average spectroscopic completeness of 48.43%, with over 80% of the observed targets having secure redshifts. Additionally, we describe our approach to generating angular masks and calculating the target selection functions, setting the stage for the impending reconstruction of the matter density field. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  4. Abstract We present observations from the Gemini Multi-Conjugate Adaptive Optics System/Gemini South Adaptive Optics Imager at Gemini South of five fast radio burst (FRB) host galaxies of FRBs with subarcsecond localizations. We examine and quantify the spatial distributions and locations of the FRBs with respect to their host galaxy light distributions, finding a median host-normalized offset of 2.09 half-light radii (re) and the trend that these FRBs occur in fainter regions of their host galaxies. When combined with the FRB host galaxy sample from Mannings et al., we find that FRBs are statistically distinct from Ca-rich transients in terms of light at the source location and from SGRBs and LGRBs in terms of host-normalized offset. We further find that most FRBs are in regions of elevated local stellar mass surface densities in comparison to the mean global values of their hosts. This, along with the finding that the FRB locations trace the distribution of stellar mass, points toward a possible similarity of the environments of CCSNe and FRBs. We also find that four out of five FRB hosts exhibit distinct spiral arm features, and the bursts originating from such hosts tend to appear on or close to their host’s spiral structure, with a median distance of 0.53 ± 0.27 kpc. With many well-localized FRB detections looming on the horizon, we will be able to better characterize the properties of FRB environments relative to their host galaxies and other transient classes. Such insights may only require us to double the number of FRBs with subarcsecond localizations. 
    more » « less
  5. Abstract The Macquart relation describes the correlation between the dispersion measure (DM) of fast radio bursts (FRBs) and the redshiftzof their host galaxies. The scatter of the Macquart relation is sensitive to the distribution of baryons in the intergalactic medium including those ejected from galactic halos through feedback processes. The variance of the distribution in DMs from the cosmic web (DMcosmic) is parameterized by a fluctuation parameterF. In this work, we present a new measurement ofFusing 78 FRBs of which 21 have been localized to host galaxies. Our analysis simultaneously fits for the Hubble constantH0and the DM distribution due to the FRB host galaxy. We find that the fluctuation parameter is degenerate with these parameters, most notablyH0, and use a uniform prior onH0to measure log 10 F > 0.86 at the 3σconfidence interval and a new constraint on the Hubble constant H 0 = 85.3 8.1 + 9.4 km s 1 Mpc 1 . Using a synthetic sample of 100 localized FRBs, the constraint on the fluctuation parameter is improved by a factor of ∼2. Comparing ourFmeasurement to simulated predictions from cosmological simulation (IllustrisTNG), we find agreement between redshifts 0.4 <z andz< 2.0. However, atz< 0.4, the simulations underpredictF, which we attribute to the rapidly changing extragalactic DM excess distribution at low redshift. 
    more » « less
  6. Abstract We report on contemporaneous optical observations at ≈10 ms timescales from the fast radio burst (FRB) 20180916B of two repeat bursts (FRB 20201023 and FRB 20220908) taken with the ‘Alopeke camera on the Gemini-North telescope. These repeats have radio fluences of 2.8 and 3.5 Jy ms, respectively, approximately in the lower 50th percentile for fluence from this repeating burst. The ‘Alopeke data reveal no significant optical detections at the FRB position and we place 3σupper limits to the optical fluences of <8.3 × 10−3and <7.7 × 10−3Jy ms after correcting for line-of-sight extinction. Together, these yield the most sensitive limits to the optical-to-radio fluence ratio of an FRB on these timescales withην< 3 × 10−3by roughly an order of magnitude. These measurements rule out progenitor models where FRB 20180916B has a similar fluence ratio to optical pulsars, such as the Crab pulsar, or where optical emission is produced as inverse-Compton radiation in a pulsar magnetosphere or young supernova remnant. Our ongoing program with ‘Alopeke on Gemini-North will continue to monitor repeating FRBs, including FRB 20180916B, to search for optical counterparts on millisecond timescales. 
    more » « less
  7. Abstract The dispersion measure of fast radio bursts (FRBs), arising from the interactions with free electrons along the propagation path, constitutes a unique probe of the cosmic baryon distribution. Their constraining power is further enhanced in combination with observations of the foreground large-scale structure and intervening galaxies. In this work, we present the first constraints on the partition of the cosmic baryons between the intergalactic medium (IGM) and circumgalactic medium (CGM), inferred from the FLIMFLAM spectroscopic survey. In its first data release, the FLIMFLAM survey targeted galaxies in the foreground of eight localized FRBs. Using Bayesian techniques, we reconstruct the underlying ∼Mpc-scale matter density field that is traced by the IGM gas. Simultaneously, deeper spectroscopy of intervening foreground galaxies (at impact parametersb≲r200) and the FRB host galaxies constrains the contribution from the CGM. Applying Bayesian parameter inference to our data and assuming a fiducial set of priors, we infer the IGM cosmic baryon fraction to be f igm = 0.59 0.10 + 0.11 and a CGM gas fraction of f gas = 0.55 0.29 + 0.26 for 1010M≲Mhalo≲ 1013Mhalos. The mean FRB host dispersion measure (rest-frame) in our sample is DM host = 90 19 + 29 pc cm 3 , of which DM host unk = 69 19 + 28 pc cm 3 arises from the host galaxy interstellar medium (ISM) and/or the FRB progenitor environment. While our currentfigmandfgasuncertainties are too broad to constrain most galactic feedback models, this result marks the first measurement of the IGM and CGM baryon fractions, as well as the first systematic separation of the FRB host dispersion measure into two components: arising from the halo and from the inner ISM/FRB engine. 
    more » « less
  8. Abstract Abundances of chemical elements in the interstellar and circumgalactic media of high-redshift galaxies offer important constraints on the nucleosynthesis by early generations of stars. Damped Lyαabsorbers (DLAs) in spectra of high-redshift background quasars are excellent sites for obtaining robust measurements of element abundances in distant galaxies. Past studies of DLAs at redshiftsz> 4 have measured abundances of ≲0.01 solar. Here we report the discovery of a DLA atz= 4.7372 with an exceptionally high degree of chemical enrichment. We estimate the Hicolumn density in this absorber to be log (NH I/cm−2) = 20.48 ± 0.15. Our analysis shows unusually high abundances of carbon and oxygen ([C/H] = 0.88 ± 0.17, [O/H] = 0.71 ± 0.16). Such a high level of enrichment a mere 1.2 Gyr after the Big Bang is surprising because of insufficient time for the required amount of star formation. To our knowledge, this is the first supersolar absorber found atz> 4.5. We find the abundances of Si and Mg to be [Si/H] = 0.56 0.35 + 0.40 and [Mg/H] = 0.59 0.50 + 0.27 , confirming the metal-rich nature of this absorber. By contrast, Fe shows a much lower abundance ([Fe/H] = 1.53 0.15 + 0.15 ). We discuss implications of our results for galactic chemical evolution models. The metallicity of this absorber is higher than that of any other known DLA and is >2 orders of magnitude above predictions of chemical evolution models and theNH I-weighted mean metallicity from previous studies atz> 4.5. The relative abundances (e.g., [O/Fe] = 2.29 ± 0.05, [C/Fe] = 2.46 ± 0.08) are also highly unusual compared to predictions for enrichment by early stars. 
    more » « less
  9. Abstract FRB 20220610A is a high-redshift fast radio burst (FRB) that has not been observed to repeat. Here, we present rest-frame UV and optical Hubble Space Telescope observations of the field of FRB 20220610A. The imaging reveals seven extended sources, one of which we identify as the most likely host galaxy with a spectroscopic redshift ofz= 1.017. We spectroscopically confirm three additional sources to be at the same redshift and identify the system as a compact galaxy group with possible signs of interaction among group members. We determine the host of FRB 20220610A to be a star-forming galaxy with a stellar mass of ≈109.7M, mass-weighted age of ≈2.6 Gyr, and star formation rate (integrated over the last 100 Myr) of ≈1.7Myr−1. These host properties are commensurate with the star-forming field galaxy population atz∼ 1 and trace their properties analogously to the population of low-zFRB hosts. Based on estimates of the total stellar mass of the galaxy group, we calculate a fiducial contribution to the observed dispersion measure from the intragroup medium of ≈90–182 pc cm−3(rest frame). This leaves a significant excess of 515 272 + 122 pc cm−3(in the observer frame); further observation will be required to determine the origin of this excess. Given the low occurrence rates of galaxies in compact groups, the discovery of an FRB in one demonstrates a rare, novel environment in which FRBs can occur. As such groups may represent ongoing or future mergers that can trigger star formation, this supports a young stellar progenitor relative to star formation. 
    more » « less
  10. Abstract We present a sample of nine fast radio bursts (FRBs) from which we derive magnetic field strengths of the host galaxies represented by normal,z< 0.5 star-forming galaxies with stellar massesM*≈ 108–1010.5M. We find no correlation between the FRB rotation measure (RM) and redshift, which indicates that the RM values are due mostly to the FRB host contribution. This assertion is further supported by a significant positive correlation (Spearman test probabilityPS< 0.05) found between the RM and the estimated host dispersion measure (DMhost; with Spearman rank correlation coefficientrS= +0.75). For these nine galaxies, we estimate their magnetic field strengths projected along the sight line ∣B∣, finding a low median value of 0.5μG. This implies the magnetic fields of our sample of hosts are weaker than those characteristic of the solar neighborhood (≈6μG), but relatively consistent with a lower limit on the observed range of ≈2–10μG for star-forming disk galaxies, especially as we consider reversals in theB-field, and that we are only probing B. We compare to RMs from simulated galaxies of the Auriga project—magneto-hydrodynamic cosmological zoom simulations—and find that the simulations predict the observed values to within a 95% confidence interval. Upcoming FRB surveys will provide hundreds of new FRBs with high-precision localizations, RMs, and imaging follow-up to support further investigation into the magnetic fields of a diverse population ofz< 1 galaxies. 
    more » « less